SANDVIK SPRINGFLEX™ STRIP STEEL

DATASHEET

Sandvik Springflex[™] is a duplex (austenitic-ferritic) stainless spring steel with very good spring properties and excellent corrosion resistance. Sandvik Springflex[™] is characterized by:

- Very good spring properties and fatigue resistance
- High resistance to stress corrosion cracking (SCC) in chloride containing environments
- High resistance to general corrosion, pitting and crevice corrosion
- High tensile strength
- High modulus of elasticity

Service temperature: - 100 to 300 °C (-150 to 570 °F)

STANDARDS

- S32205, S31803
- 1.4462
- X 2 CrNiMo 22-5-3

CHEMICAL COMPOSITION (NOMINAL)

Chemical composition (nominal) %

Start Contract Start Start	Si	Mn	P	S S	Cr	Ni	Mo	N get get
0.030	0.5	0.9	≤0.030	≤0.015	22	5	3.2	0.18

APPLICATIONS

Due to the unique combination of excellent spring properties and high resistance to corrosion, Sandvik Springflex[™] can advantageously replace ASTM 301, 17-7PH or coated carbon steel in the form of springs, coil springs, spring washers, hose clamps, etc. where heavy demands are made on the resistance to corrosion attack in many industrial applications, such as:

- Automotive
- Food
- Oil & Gas
- Chemical
- Pulp & Paper
- Marine & Shipping

FORMS OF SUPPLY

Sandvik Springflex[™] is supplied, as standard, in the cold rolled condition. Strip steel can be supplied in coils, bundles, on plastic spools or in lengths. The edges can be slit, deburred or smoothly rounded. Contact us for

more information.

The following range of thicknesses and widths can be supplied as standard. Please contact Sandvik if other dimensions are required.

DIMENSIONS

Thickness, mm	Width, mm	Thickness, in	Width, in
0.03 - 3.5*	2 - 300	0.0012 - 0.14	0.079 - 12

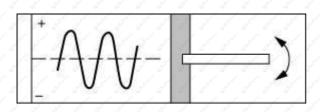
*Depending on requested tensile strength.

Tolerances

The thickness and width tolerances are +/- tolerances to the nominal size. The normal tolerance classes for most of our strip products are T2 and B1. Tighter tolerances as well as other tolerance limits can be offered upon request.

MECHANICAL PROPERTIES

Static strength, nominal values


Condition ¹⁾	Tensile stre	ength,Rm	Proof streng	gth, Rp0.2 ^{a)}	Elongati	on, A11.3
all and and all all	MPa	ksi	MPa	ksi	%	Star Star Star Star
C	1100	160	1000	145	18	and a stand a stand a stand
СТ	1200	174	1150	167	10	and Charlen Statement Statement
C	1300	188	1200	174	5	and a start of the
CT of of	1500	217	1450	210	4 , 4 ,	and Charlen Charlen Charlen
C	1500	218	1375	199		States - States - States
CT of of of	1700	247	1650	239	State State State	States States States States
C . J. J. J.	1700	247	1600	232	Start Start Start	Start Start Start
CT of of	2000	290	1950	283	o ^w o ^w 2 o ^w o ^w	and Statement Statement Statement
C S S S	1900	276	1700	247	³ 2 ³ 3	and and and and and
СТ	2200	319	2000	290	2	and a star and a star

1) C = Cold rolled, CT = Cold rolled and tempered, 450 °C (840 °F)/1h. Refer to section 'Heat treatment'. a) Rp0.2 corresponds to 0.2% offset yield strength. 1 MPa = 1 N/mm²

Fatigue strength

Nominal values at 20 °C (68 °F) in a normal dry atmosphere. The fatigue limit is defined as the stress at which 50% of the specimens withstand a minimum of 2 million load cycles.

Reversed bending stress Average stress = 0 Bending transversal torolling direction.

Tensile strength, Rm

Fatigue limit

Tensile strength, Rm

Fatigue limit

Tensile strength, I	Rm Fatigue limit	Tensile strength, Rr	n Fatigue limit
MPa	MPa MPa	a ksi a a a a a	ksi di di di di di
1600	±615	232	±89

*Measured on strip in thickness 0.50 mm (0.020 in).

Relaxation

Relaxation testing of Sandvik Springflex[™] shows better relaxation properties than for austenitic grades at comparable tensile strength levels. The figure shows the relaxation (load loss) at room temperature as a function of time for Sandvik Springflex in the tempered condition compared to standard spring grades 17-7PH (EN 1.4568) and ASTM 301 (EN 1.4310). See figure 1.

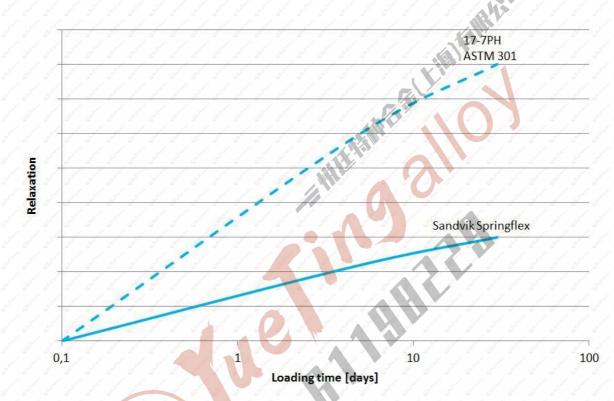


Figure 1. Relaxation (load loss) at room temperature as a function of time. Sandvik Springflex compared to 17-7PH and ASTM 301.

PHYSICAL PROPERTIES

The values refer to cold rolled material, at a temperature of 20°C (68°F) unless otherwise stated.

Density 7.8 g/cm³ (0.28 lb/in³)

The	rmal	conductivity	
1110	FIIIAI	conductivity	

yer?	Temperature, °C	Ster Ster	W/m °C	Stration St	Temperature, °F Btu/ft h °F	Strates -
jter.	20 0 0 0 0 0 0 0 0	Ster.	14 5 5	States St	68	States of
it of	100	aren Gira	16	States St	200 9	States States
ater.	300	Ster Ster	19	Start Start	600 11	an Shan

Specific heat capacity

500 J/kg °C (in the temperature range 50 – 100°C)

Thermal expansion mean values in temperature ranges (x10- 6)

Temperature, ℃	per °C	Temperature, °F	per °F
20 - 100	13	68 - 200	7
20 - 200	13.5	68 - 400	7.5
20 - 300	14	68 - 550	8

Resistivity

Jefferen Stefferen	Thefearer	-shelfer	Гетр	eratu	ıre, °	С "/	er - stefred	μ	Ωm	Thefast		at a feature	Tem	pera	ture	, °F	Thefreen	Stational	Stational State	and alternat	μΩir	nch	and Shell	and a she fragen
20	Stefnam	Station	Stefrager C	Jean Ste	Marrie Skel	and Shales	Strafford	0.	74	Stefrage	States	Sterry	68	Station	Sheling	States	Shefrend	Station	Stefferen Stef	Sherry Sherry	29	States Stat	are Staff	Sterner
100	Shelles P	States	Station of	Jean Ste	rar otral	oren Ghefre	of a frates	0.	85	Chairman .	Steamer	of the first	200	Stafford	Oference	Ghefresen	States	Charles and	Stratuant Stel	1	33	Search Staff	or a chair	of the first of
200	Stefest	Steiner	States of	Jean of	Chair Chair	are Shales	Stefan	0.	96	Stefan	Sterrer	Staffe	400	Steller	Steiner	Obelian	Chainson	Station	34 - 13	States	38	Stranger Steal	Stell	Charmer
300	Stef of	Sterner	Staffar C	Justine Chi	Chair Chair	States	States	.1.	0	Stefat	Sterrer	Staffa	600	Sterror	Ghefred and	Steffer	Steffer	States		and Shelfer	40	Strategy Steal	State	Charmen and

Modulus of elasticity

Cold rolled, C: approx. 200 000 MPa (29 000 ksi)

Cold rolled and tempered, CT: approx. 210 000 MPa (30 400 ksi)

For cold rolled and tempered condition, the modulus of elasticity shows a high and almost constant value up to loads of about 70% of the yield strength, as shown in figure 2. For comparison, similar values for grades 17-7PH (EN 1.4568) and ASTM 301 (EN 1.4310) spring steels are added.

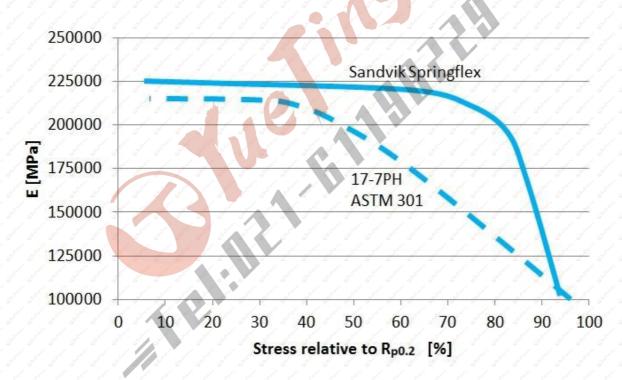


Figure 2. Modulus of Elasticity, E, as a function of applied stress. Sandvik Springflex compared with 17-7PH and ASTM 301.

CORROSION RESISTANCE

In most media, Sandvik Springflex[™] possesses better resistance to general corrosion than steel of type ASTM 316L. For details please refer to Sandvik Corrosion Handbook.

Pitting

The pitting resistance of stainless steel is determined primarily by its chromium and molybdenum contents, but also by its nitrogen content. A parameter for comparing the resistance of different steels to pitting is the PRE number (Pitting Resistance Equivalent).

The PRE is defined as, inweight-%:

PRE = % Cr + 3.3 x % Mo + 16 x % N

The PRE numbers for Sandvik Springflex[™] and two standard materials are given in the following table.

Grade		% Cr	% Mo	% N	PRE
Sandvik Springflex	- Section of	22	3.2	0.18	>35
ASTM 316L	- Staffant	17	2.2	and a second and a second as	Approx. 24
ASTM 301/304	aternation	18	a defined defined defined defined	-	Approx. 18

The ranking given by the PRE number has been confirmed in laboratory tests. This ranking can generally be used to predict the performance of an alloy in chloride containing environments.

Laboratory determinations of critical temperatures for the initiation of pitting (CPT) at different chloride contents are shown in figure 3. The chosen testing conditions have yielded results that agree closely with practical experience.

Sandvik Springflex[™] can be used at considerably higher temperatures and chloride contents than ASTM 301/304 and ASTM 316 without pitting. It is, therefore, far more serviceable in chloride-bearing environments than standard austenitic steels.

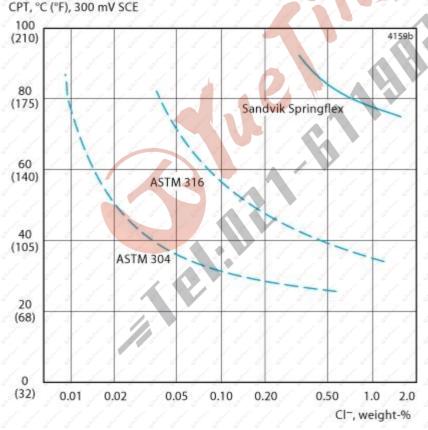


Figure 3. CPT at varying concentrations of sodium chloride (potentiostatic determination at +300mV SCE), pH approx. 6.0.

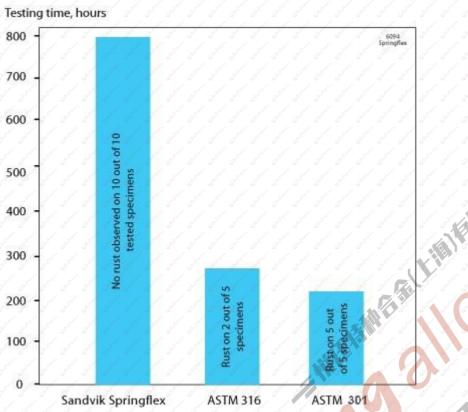


Figure 4. Neutral salt spray test according to ASTM B 117. Springs in the tempered condition were sprayed with neutral, 5 % by volume, salt solution at 35°C (95°F), pH 6.5 - 7.2. Inspections were carried out every 24 hours.

Crevice corrosion

Crevice corrosion is a similar phenomenon as pitting corrosion, but occurs in crevices and cracks, e.g. between assembled parts or under deposits on the metal. Crevice corrosion often occurs at lower temperatures and at lower chloride contents than those necessary for pitting to occur. Resistance is influenced by the content of Cr, Mo and N, in the same way as pitting resistance. Sandvik Springflex™ offers considerable better resistance to crevice corrosion compared to standard austenitic steels like ASTM 301 (EN 1.4310) and ASTM 316L (EN 1.4404).

Stress corrosion cracking

Standard austenitic steels of the ASTM 301/304 and ASTM 316L types are prone to stress corrosion cracking (SCC) in chloride-bearing solutions at temperatures above 60°C (140°F).

Duplex stainless steels are far less prone to this type of corrosion. Laboratory tests have shown the good resistance to stress corrosion cracking of Sandvik Springflex[™]. Results from these tests are presented in Figure 5. The diagram indicates the temperature-chloride range within which Sandvik Springflex[™] shows superior resistance to SSCS compared with standard steels ASTM 301/304 and ASTM 316L.

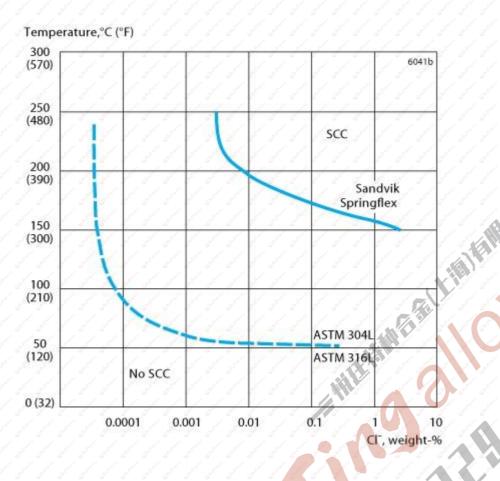


Figure 5. Resistance to stress corrosion cracking, laboratory results for Sandvik Springflex of constant load specimens loaded to 85% of the proof strength at the test temperature.

HEAT TREATMENT

The strength of cold rolled Sandvik Springflex[™] can be increased by a tempering operation at 450°C (840°F) for 1 hour. An increase in tensile strength of approx. 200 to 350 MPa can be expected, depending on the initial cold rolled tensile strength. Further information on the nominal tempering effect can be seen under the "Mechanical properties" section. This heat treatment is also beneficial for relaxation and fatigue resistance.

Tempering is normally carried out after forming of the parts.

Tempering in open air furnaces gives a brownish oxide on the surface and can have a negative impact on the corrosion resistance. For applications where the corrosion resistance is critical, it is recommended to perform the tempering in protective gas, or to use parts in the untempered condition. Alternatively post-tempering treatment by pickling and/or tumbling can be performed. Contact Sandvik for further recommendations.

BENDING

The values given below have been obtained by bending according to Swedish standard SS 11 26 26 method 3 (in a 90° V-block with a 25 mm die opening, a sample of 35 mm width, turned so that the burrs of the blanked edges face into the bend). They can be used as guidance for the smallest recommended bending radius.

Steel	Nomina	al te	nsile	str	eng	th, F	Rm	Strefter	J. Star	⁻ hick	kness, t	Shel	Min	. bei	ndin	ig ra	dius	sas	fund	ction of	thick	nes	s *)	Sterres	Shelman
Steel	MPa	Steller .	States	of States	States	States	Shelle	States	Sterr	Store Star	mm	States	<u> </u>	Sterro	Stello	States	Stafe?	of States	States	. J ^{ara} [] Jar	States	Steller.	of Sterio	States	States
j.	1300	Stell	Sterrer .	of the state	Stains	Sterra	Sterr	Star.	Staff	Ster.	0.25	Star	<0.	5t	Sterr	Starra	of States	oterne	Green Color	3 t	Staffa	Star	Start a	of Steeler	Sterring

Nominal tensile strength, Rm	Thickness,	t Min. bending rad	ius as function of thickness *)
1700	0.25	1.5 t	6.5 t
1700	0.50	3 t	10t
1900	0.25	2.5 t	10t
 *) ⊥ Bend transverse to the rolling di // Bend parallel to the rolling direction 	rection		
			and and and a start and a start of

Disclaimer: Recommendations are for guidance only, and the suitability of a material for a specific application can be confirmed only when we know the actual service conditions. Continuous development may necessitate changes in technical data without notice. This datasheet is only valid for Sandvik materials.

